
Lecture 9 

THE DEFINITION OF TORSION 
Plan 

1. The tensional shearing stress by torsion.  

2. About the angle of twist. 

3. The strength - weight ratio under torsion. 

 

 

      9.1. The tensional shearing stress by torsion. 

Consider а bar rigidly clamped at one and twisted at the other end by а 

torque (twisting moment): 

dFT   
 

applied in а plane perpendicular to the axis of the bar as shown in Fig. 9.1. 

Such а bar is in torsion. An alternative representation of the torque is the 

double - headed vector directed along the axis of the bar. 

 

 

Occasionally а number of couples act along the length of а shaft. In 

that case it is convenient to introduce а new quantity, the twisting moment, 

which fur any section along the bar is defined to be the algebraic sum of 

the moments of the applied couples that lie to one side of the section in 

question. The choice of side in any case is of course arbitrary. 

For а hollow circular shaft of outer diameter d  with а concentric 

circular hole of diameter D , the polar moment of inertia of the cross - 

         Fig. 9.1 



sectional area, usually denoted bу I . is given by: 
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The polar moment of inertia for а solid shaft is obtained by setting 

0d .  

 

Let D  denote the outside diameter of the shaft and d , the inside 

diameter. Because of the circular symmetry involved, it is most convenient 

to adopt the polar coordinate system shown in Fig. 9.2. 

By definition, the polar moment of inertia is given by the integral: 

 


A

dAI 2 , 

 

where A indicates that the integral is to be evaluated over the entire cross - 

sectional area. 

Fig. 9.2 



То evaluate this integral we select as an element of area а thin ring-

shaped element of radius   and radial thickness d  as shown. The area of 

the ring is: 
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The units of I  are in
4
 or m

3.
 For the special case of а solid circular 

shaft, the аbоvе becomes: 
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where d  denotes the diameter of the shaft. 

Тhis quantity I  is а mathematical property of the geometry of the 

cross section which occurs in the study of the stresses set up in а circular 

shaft subject to torsion. 

Occasionally it is convenient to rewrite the above equation in the 

form: 
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This last form is useful in numerical evaluation of I  in those cases 

where the difference  dD   is small. 

For either а solid or а hollow circular shaft subject to а twisting 

moment T  the tensional shearing stress   at а distance   from the center 

of the shaft is given by: 
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This stress distribution varies from zero at the center of the shaft (if it 

is solid) to а maximum at the outer fibers, as shown in Fig. 9.3. It is to be 

emphasized that no points of the bar are stressed beyond the proportional 

limit. 



 

Let us derive an expression relating the applied twisting moment 

acting on а shaft of circular cross section and the shearing stress at any 

point in the shaft. 

In fig. 9.4, а the shaft is shown loaded by the two torques T  and 

consequently is in static equilibrium. То determine the distribution of 

shearing stress in the shaft, let us cut the shaft by а plane passing through it 

in а direction perpendicular to the geometric axis of the bar. 

The free - body diagram of the portion of the shaft to the left of this 

plane appears as in fig. 9.4, b. 

Obviously а torque T  must асt over the cross section cut by the plane. 

This is true since the entire shaft is in equilibrium, and hence any portion 

of it also is. The torque T  acting оn the cut section represents the effect of 

the right portion of the shaft оn the left portion. Since the right portion has 

been removed, it must be replaced by its effect оn the left portion. This 

effect is represented by the torque T . This torque is of course а resultant of 

shearing stresses distributed over the cross section. It is now necessary to 

make certain assumptions in order to determine the nature of the variation 

of shear stress intensity over the cross section. 

One fundamental assumption is that а plane section of the shaft normal 

to its axis before loads are applied remains plane and normal to the axis 

after loading. This may be verified experimentally for circular shafts, but 

this assumption is not valid for shafts of noncircular cross section. 

 

Fig.9.3 
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Fig. 9.4 

 

А generator оn the surfacc of the shaft, denoted by AO1  in Fig. 9.5. 

deforms into the configuration BO1  after torsion has occurred. The angle 

between these configurations is denoted by  . By definition, the shearing 

unit strain   on the surface of thc shaft is: 

 

  tg , 

 

where the angle   is measured in radians. From the geometry of the figure  
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But since а diameter of the shaft prior to loading is assumed to remain 

а diameter after torsion has occurred, the shearing unit strain at а general 

distance   from the center of the shaft may likewise be written: 
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Consequently the shearing strains of the longitudinal fibers vary 

linearly as the distances from the center of the shaft. 

If we assume that we are concerned only with the linear range of 

action of the material where the shearing stress is proportional to shearing 

strain, then it is evident that the shearing stresses of the longitudinal fibers 

vary linearly as the distances from the center of the shaft. Obviously the 

distribution of shearing stresses is symmetric around the geometric axis of 



the shaft. They have the appearance shown in Fig. 9.5. For equilibrium, the 

sum of the moments of these distributed shearing forces over the entire 

circular cross section is equal to the applied twisting moment. Also, the 

sum of the moments of these forces is exactly equal to the torque T  shown 

in Fig. 9.7, b above. 

 

 

Thus we have: 
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where dA  represents the area of the shaded ring-shaped element shown in 

Fig. 9.5. However, the shearing stresses vary as the distances from the 

geometric axis; hence 
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
, 

 

where the subscripts оn the shearing stress denote the distances of the 

element from the axis of the shaft. 

Consequently we may write: 
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since the ratio 



 is а constant.  However, the expression 

r
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2  is by 

definition the polar moment of inertia of the cross-sectional area. Hence 

the desired relationship is: 

Fig. 9.5 
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It is to be emphasized that this expression holds only if no points of 

the bar агe stressed beyond the proportional limit of the material. 

If а generator a  - b  is marked on the surface of the unloaded bar, then 

after the twisting moment T  has bееn applied this line moves to a  - b , as 

shown in Fig. 9.6. The angle  , measured in radians, between the final and 

original positions of the generator is defined as the shearing strain at the 

surface of the bar. The same definition would hold at any interior point of 

the bar. 

On beginning 

  

Fig. 9.6 



9.2. About the angle of twist. 

The ratio of the shear stress   to the shear strain у is called the 

modulus of elasticity in shear is given by: 
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Again the units of G  are the same as those of shear stress, since the 

shear strain is dimensionless. 

Let us derive an expression for the angle of twist of а circular shaft as 

а function of the applied twisting moment. Assume that the entire shaft is 

acting within the elastic range of action of the material. 

 

 

Let   denote the length of the shaft, I  the polar moment of inertia of 

the cross section. T  the applied twisting moment (assumed const ant along 

the length of the bar). and G  the modulus of elasticity in shear. The angle 

of twist in а length   is represented bу   in Fig. 9.7. 

From Eq. (9.2) we have at the outer fibers where r : 
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By definition, the shear modulus is given by: 
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Fig. 9.7 



from which  
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  is expressed in radians, i.e., it is dimensionless. 

Occasionally the angle of twist in а unit length is useful. It is often 

denoted by   and is given by: 
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If а shaft of length   is subject to а constant twisting moment T  along 

its length, then the angle   through which one end of the bar will twist 

relative to the other is: 
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where I  denotes the polar moment of inertia of the cross section. 
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9.3. The strength - weight ratio under torsion. 
А shaft rotating with constant angular velocity   (radians per second) 

is being acted on by а twisting moment T  and hence transmits а power: 

 

 TP . 

 

Alternatively, in terms of the number of revolutions per second f , the 

power transmitted is: 

TfP  2 . 

 

As the twisting moment acting on either а solid or hollow circular bar 

is increased, а value of the twisting moment is finally reached for which 

the extreme fibers of the bar have reached the yield point in shear of the 

material. This is the maximum possible elastic twisting moment that the 

bar can withstand and is denoted by eT .  

А further increase in the value of the twisting moment puts the interior 

fibers at the yield point, with yielding progressing from the outer fibers 

inward. The limiting case occurs when all fibers are stressed to the yield 



point in shear and this represents the fully plastic twisting moment. It is 

denoted by T . Provided we do not consider stresses greater than the yield 

point in shear, this is the maximum possible twisting moment the bar can 

carry. For а solid circular bar subject to torsion: 
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4
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Let us consider а thin-walled tube subject to torsion. Derive an 

approximate expression for the allowable twisting moment if the working 

stress in shear is а given constant  . Also, derive an approximate 

expression for the strength-weight ratio or such а tube. It is assumed the 

tube does not buckle, and the material is within the elastic range or action. 

The polar moment of inertia of а hollow circular shaft of outer 

diameter D  and inner diameter d , is  44

32
dDI 


 . If R  denotes the 

outer radius of the tube, then RD 2 , and further, if r  denotes the wall 

thickness of the tube. then tRd 22  . 

The polar moment of inertia I  mау be written in the alternate form: 
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Neglecting squares and higher powers of the ration 
R

t
, since we are 

considering а thin-walled tube, this becomes, approximately, tRI 32  . 

 

The ordinary torsion formula is: 
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For а thin - walled tube this becomes, for the allowable twisting 

moment: 

 tRT 22 . 

 

The weight W  of the tube is: 

AW   , 

 

where   is the specific weight of the material,   the length of the tube, and 

A  the cross - sectional area of the tube. The area is given by: 
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Again neglecting the square of the ratio 
R

t
 for а thin tube, this 

becomes: 
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The strength - weight ratio is defined to be 
W

T
. This is given by: 
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The ratio is of considerable importance in aircraft design. 
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